

Redox Transformations in Wildfire Ashes Studied by micro

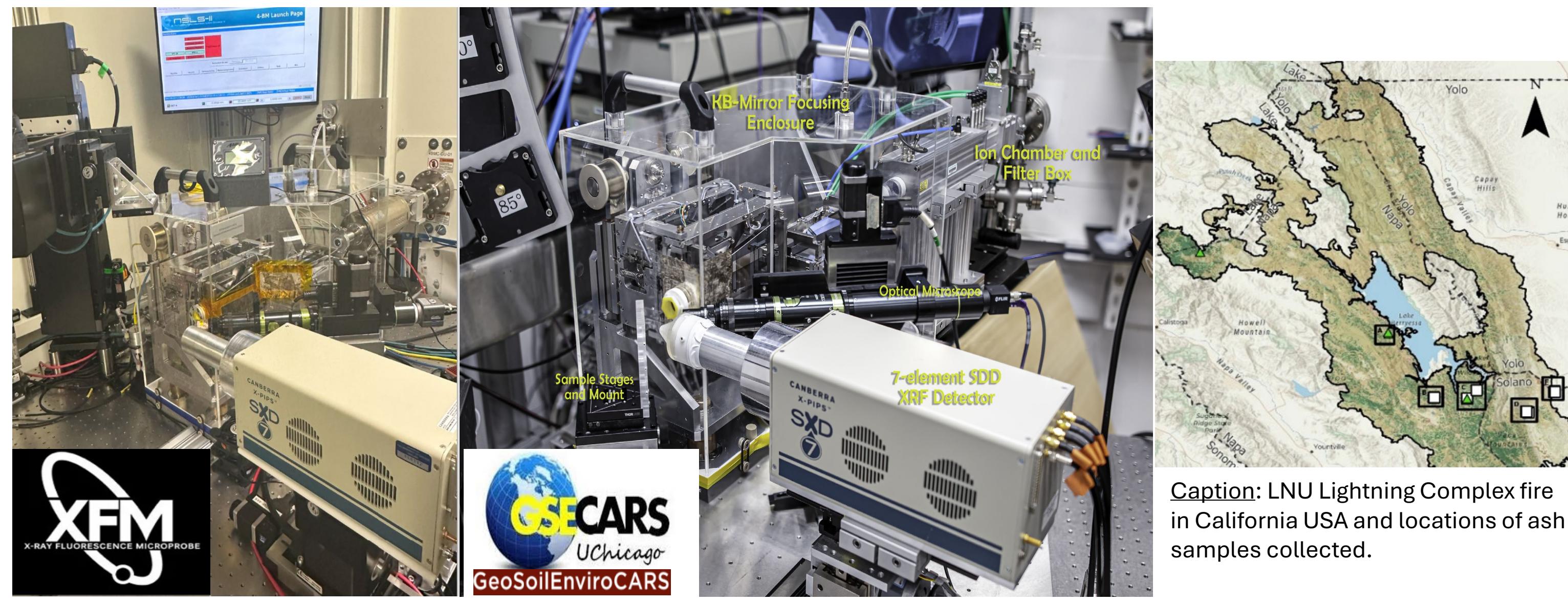
X-ray Absorption Spectroscopy

Roberto A. Colina-Ruiz¹, Morgane Desmau², Ryan V. Tappero³, Antonio Lanzirotti¹, Mohammed Baalousha⁴

¹Center for Advanced Radiation Sources, The University of Chicago, Argonne, IL 60439, USA.

²Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, NB, Canada.

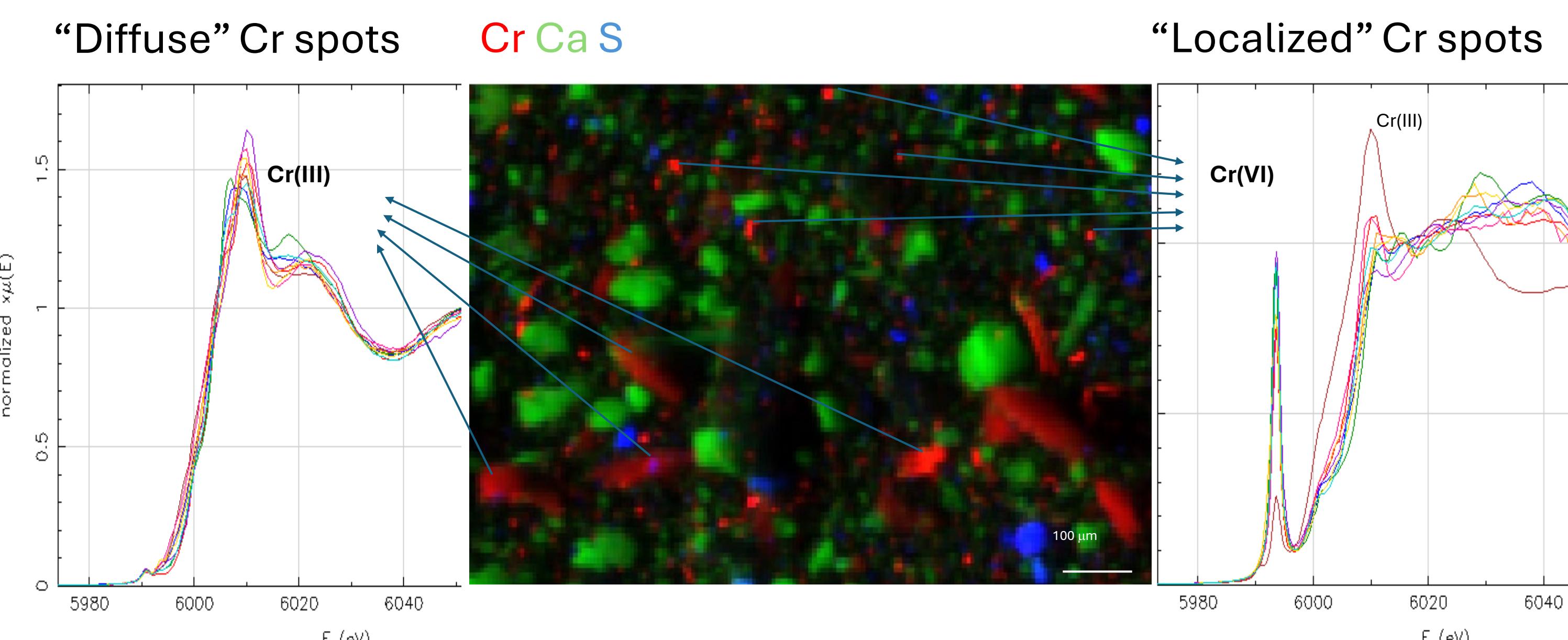
³National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA.

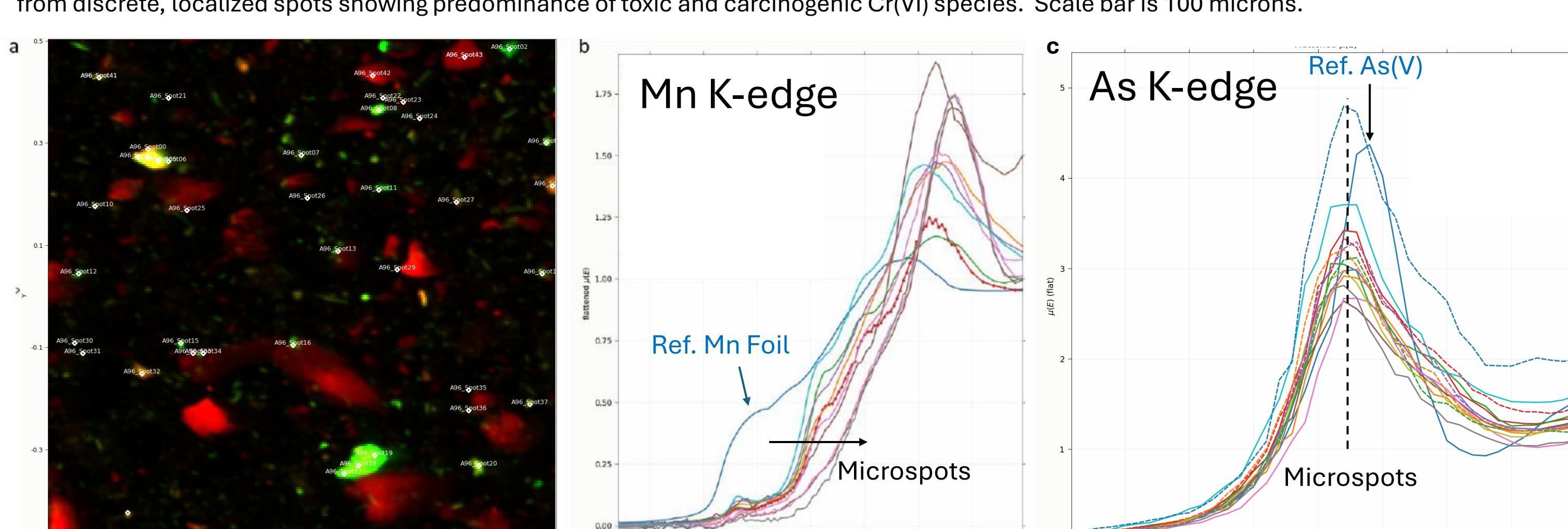

⁴Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA.

Background and Motivation

- Wildfires have increased in frequency, size, and severity, spreading into the wildland-urban interface (WUI) and emitting contaminants. Then, there is a need to understand the constituents of particulate matter emitted by WUI fires and their impact on environmental and human health with high spatial resolution.
- We performed experiments to evaluate oxidation state changes in metal(loid) (e.g., Cr, Mn, As, and Ti) to identify species and phase such as Magnéti titania (more toxic than anatase and rutile phases), Mn(IV) (highly reactive), As(III) (more mobile and toxic than As(V)) and/or Cr(VI) (more mobile and toxic than Cr(III)).

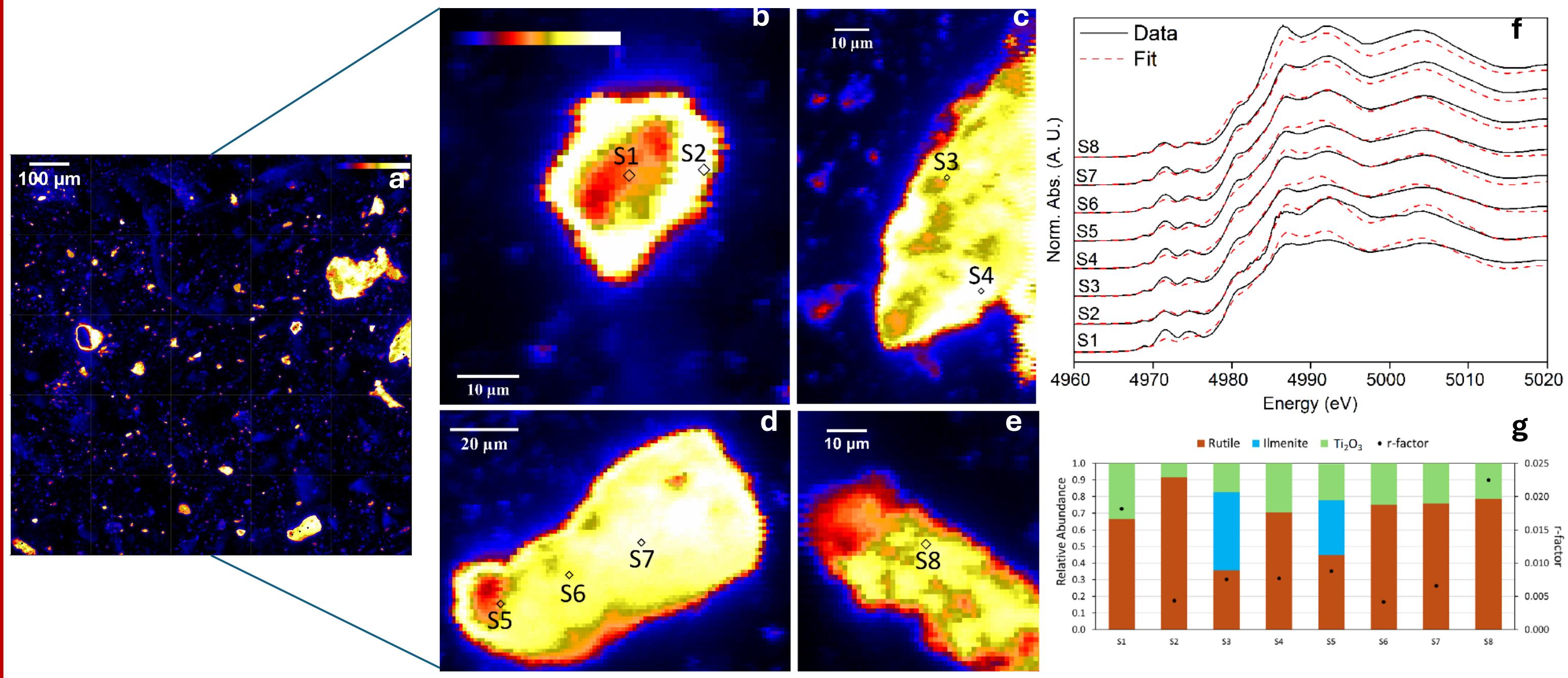
Materials and Methods


- Wildland-urban interface (WUI) fire ashes were collected from the 2020 LNU Lightning Complex Fire perimeter in Northern California, USA.
- Micro X-ray fluorescence (μXRF) imaging and micro X-ray absorption fine structure spectroscopic (μXAFS) experiments were performed at the beamlines 4-BM (XFM) at the National Synchrotron Light Source II (NSLS-II) in Brookhaven National Laboratory (BNL) and 13-ID-E (GSECARS) at the Advanced Photon Source (APS) in Argonne National Laboratory (ANL).


Caption: Schematic of (left) 4-BM XFM and (right) 13-ID-E GSECARS endstations at NSLS-II in BNL and APS in ANL respectively.

Initial Findings

We have found that not only the combustion of chromated copper arsenate (CCA) treated wood leads to the formation of incidental nano-materials (INMs) containing toxic and carcinogenic hexavalent chromium Cr(VI) detected in the ashes but also the whole combustion process. Mixed Cr(III) and Cr(VI) signals were detected.



Caption: X-ray fluorescence images of Cr (red), Ca (green) and S (blue) in fire ash sample from chromated copper arsenate (CCA) treated wood; (left) Cr K-edge μXANES from "diffuse" areas showing predominance of non-toxic Cr(III) species (as expected for CCA wood); (right) Cr K-edge μXANES from discrete, localized spots showing predominance of toxic and carcinogenic Cr(VI) species. Scale bar is 100 microns.

Caption: (a) μXRF elemental map showing Mn (Red) and As (Green) concentrations. (b) Mn K-edge μXANES spectra showing a high variability of species (e.g., MnSO₄, MnS, Mn₃O₄, MnO₂, Mn₂O₃) on selected microspots. (c) As K-edge μXANES show a slight reduction point to have some As(III) nanoparticles (blue spectrum As(V) as reference).

- Oxidation of Mn(II) or Mn(III) during high-temp O₂-rich combustion and complex redox chemistry from synthetic materials could lead to microscopic Mn(IV) expected to be found as as pyrolusite.
- Analyzed microspots from As K-edge μXANES shows a slight energy shift to lower energy than As(V), this point to some As(III) in WUI ashes which likely reflects submicrometric As(III) particles formation, which usually requires low-oxygen or smoldering zones.
- μXRF mapping revealed Ti-rich particle aggregates (~20-50 μm) which could contain reduced phases due to potential reducing microenvironments with high-temperature conditions.
- Ti K-edge μXANES linear combination fitting analysis suggests that WUI fire ash sample contain a mixture of anatase, rutile, ilmenite, and Ti₂O₃. The Ti₂O₃ (which never appeared pure) is attributed as a component of the Magnéti phases (e.g., a mixture of TiO₂ and Ti₂O₃)

Caption: 1x1 mm² μXRF elemental map showing the microscale Ti spatial distribution (b-e) μXRF maps of representative Ti-bearing grains (<100 μm size) with a series of microspots (S1 to S8) used for Ti K-edge μXANES; (f) linear combination fits of Ti K-edge μXANES spectra of S1 to S8 microspots, and (g) the relative abundance of the identified Ti-phases in the analyzed microspot using the reference spectra (rutile, ilmenite and Ti₂O₃).

Table. Relative abundance of each Ti phase (fitting window = -20 to 30) in the spots measured by μXANES

Spectrum number	Ti ₂ O ₃	Rutile	Anatase	Ilmenite	Error Ti ₂ O ₃	Error Rutile	Error Anatase	Error Ilmenite	r-factor	chi-square
38	0.082	0.918	0.000	0.000	0.008	0.092			0.004	0.204
41	0.294	0.706	0.000	0.000	0.047	0.010			0.008	0.344
68	0.249	0.751	0.000	0.000	0.008	0.051			0.004	0.200
69	0.241	0.759	0.000	0.000	0.010	0.039			0.007	0.345
72	0.214	0.786	0.000	0.000	0.024	0.020			0.022	1.334
40	0.174	0.355	0.000	0.471	0.053	0.032			0.037	0.008
66	0.217	0.045	0.000	0.336	0.054	0.035			0.040	0.009
18	0.000	1.000	0.000	0.000					0.007	0.297
30	0.000	1.000	0.000	0.000					0.008	0.375
39	0.000	1.000	0.000	0.000					0.010	0.476
23	0.000	1.000	0.000	0.000					0.009	0.476
56	0.000	1.000	0.000	0.000					0.018	0.855
3	0.000	0.000	1.000	0.000					0.009	0.514
20	0.000	0.000	1.000	0.000					0.014	0.835
58	0.000	0.000	1.000	0.000					0.017	0.976

Concluding Remarks

- Cr K-edge μXANES localized spots point to submicron Cr(VI)-rich particles found from the combustion of chromated copper arsenate and/or Cr₂O₃-contained pigments, paints, and coatings leading to INMs.
- Even Mn(IV) is less bioavailable, we have detected potential signatures of its presence by Mn K-edge μXANES, which could have been favored by high-temperature and oxygen-rich combustion conditions.
- As from WUI fires could contain traces of As(III) in submicrometric level.
- Evidence of Magnéti Phases has been found, which are formed by the thermal reduction of TiO₂ at 800–1200°C in low-oxygen (reducing) microenvironments. μXAFS is an essential tool for their detection.
- Semi-quantitative analyses (e.g., LCFs and/or PCAs) are still needed (e.g., to support As(III) detection).

Relevant References

- Baalousha, M.; Desmau, M.; Colina-Ruiz R.; Lanzirotti, A.; Singerling, S.; Alpers, C.; Widespread occurrence of Magnéti phases in wildland-urban interface fire ashes (*Under review ES&T*)
- Correa Velez, K. E.; Alam, M.; Baalousha, M.; Norman, R. S. Wildfire ashes from the Wildland Urban Interface alter *Vibrio vulnificus* growth and gene expression. *Environmental Science & Technology* 2024, 58 (19), 8169-8181
- Baalousha, M.; Desmau, M.; Singerling, S.; Webster, J. P.; Matiasek, S.; Stern, M. A.; Alpers, C. N. Discovery and potential ramifications of reduced iron-bearing nanomaterials—magnetite, wüstite, and zero valent iron—in wildland-urban interface fire ashes. *Environmental Science Nano* 2022, 9 (4136), 4149.
- Alshehri, T.; Wang, J.; Singerling, S. A.; Gigault, J.; Webster, J. P.; Matiasek, S. J.; Alpers, C. N.; Baalousha, M. Wildland-urban interface fire ashes as a major source of incidental nanomaterials. *Journal of Hazardous Materials* 2023, 443, 130311. DOI: 10.1016/j.hazmat.2022.130311
- Alshehri, T.; Jassim, A. Y.; Cai, B.; Richardson, T. L.; Baalousha, M. Comparative assessment of the impacts of wildland-urban interface fire ash on growth of the diatom *Thalassiosira weissflogii*. *Nanomaterials* 2025, 422, 15(6). DOI: 10.3390/nano15060422.