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Abstract New instrument: Pilatus3X 1M Cd-Te detector
The GSECARS 13-BM-C beamline at the Advanced Photon Source has been providing Sharper peaks
. _ : : : . for CdTe detector
crystallographic research capabilities to the high pressure community since 2015. This
beamline utilizes focused X-rays at two fixed energies: 15 and 29 keV, and a unique 6-
circle heavy duty diffractometer. The instrument is optimized for a variety of advanced crys-
tallography experiments including interface studies, powder and single crystal structure de-
termination, equation of state studies and atomic dynamics research. Currently we support
high-pressure and variable-temperature experiments using diamond anvil cells, resistive-
/laser-heating and cryostats. We have achieved P-T conditions of 100 GPa and 150-3000 I
K. Results of multiple recent experiments, including powder and single crystal diffraction
over a range of P-T conditions, equations of state and atomic dynamics will be presented
to demonstrate the experimental capabilities. These new capabilities are available to all re-
searchers interested in studying deep earth materials through the APS General User Pro-
posal system. SrCoP, 850 s, Pilatus 1M Si
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Science case 1: High pressure crystal structure of CsPbBr, C:Te detsectof"s ~3.5 times more sensitive
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Science case 2: Si isotope fractionation in mantle silicates Temperature (K)
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Figure 1. Optical images (top) and corresponding merged diffraction images (bottom) of 300 400 500 600 700 800 900 1000 Temperature (K)
CsPbBr, at various pressures. Sample is located at the center of the Re-gasket hole and Temperature (K) 10 2000 1500 1250 1000 875 750
a small piece of ruby sphere is located close to the sample as pressure marker. A&D): Figure 4: The Si atomic mean square displacement {u?) as a function of tem- —— This study
0.27 GPa (right after gas Ioac!ing). B&E): 2.08 GPa (right after the structural transition). perature determined by the high-T XRD experiments from this study. Best — Li2019, DFT
C&F): 1 bar after decompression. linear fits and fitting error ranges are shown as the straight lines and shaded g A 12020 MCACPMS
Pnma regions.
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Figure 2. Crystal structure of the low pressure (left) and high pressure (right) crystal struc- Ns = fM(%) D(E)dE T omaots ort
tures of CsPbBr, determined from single crystal X-ray diffraction. The red boundaries indi- : : : : Ty oo e
cate the unit-cell of each phase. where M is the atqmlc mass the isotope, n is the reduced Planck D Tranzglgidirect;;n
constant and D(E) is the partial phonon density of states. eSO Guitreau2022
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