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A  sublithospheric diamond
contains several sub-surfaced
inclusions. The user wants to

characterize one of them
A suite of techniques may be used to study diamond inclusions and to identify the phases entrapped. before they decide if it is worth
However, many are considered destructive, often requiring exposure of the inclusion to the surface by diamond
polishing. Such approaches pose a significant risk to the analysis and results interpretation due to possible
alteration of the inclusions by exposure to the atmospheric air and pressure as well as loss of fluid phases.

Diamond inclusions represent a direct window into the deepest layers of our planet and

although rare specimens, the information they carry is invaluable in determining the mantle
chemistry and understanding processes such as mantle convection and volatile cycling.
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imaging. The cross represents the X-ray beam  the inclusion from the
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The 13ID-D line at GSECARS is often used to study diamond
inclusions and new minerals have been discovered here
(Tschauner et al. 2014; 2018). Users particularly benefit A user Can See a Su bSU rfa ce
from the small beam size and the high flux. However, sub- The inclusion of interest is 10 um size big and . . .
surface inclusions remain a challenge at this beamline. very hard to locate and center upon | nCI usion u nd er th e MICrosco pe,
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but they can’t see it using X-ray
radiography, due to its low Z-

_‘ elements content and poor

absorption contrast.

Synchrotron single-crystal X-ray diffractionis a powerful and unique tool in unravelling complex

mineral assemblages by allowing accurate structure determination and phase identification. A critical
requirement for a successful data collection is to bring the inclusion in the center of rotation (Fig 2.) . This is easily
done for exposed inclusions using an optical approach (a.k.a. microscope camera). However, studying
sub-surface inclusions presents a great challenge during alignment procedures. Due to the diamong

refraction index, it is very hard to align optically on a nhon-exposed inclusion (Fig. 1.). A badly ‘ ve r\/l CW
centered inclusion escapes the X-ray beam during collections (Fig. 2a.) which results -
in severely incomplete datasets (Fig. 2b).

Using the reconstructed images, we can drive the sample stages
to the XYZ position of the inclusion even if
we do not practically see it.
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STEP 1: X-ray Computed Microtomography
Locate, Visualize & Align
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Ask me for
Videos!

Pink Beam (30keV cutoff)

Monochromatic Beam (37keV)
900 frames / 0.2° steps / 2 s exposure 1800 frames / 0.1° steps / 0.008 s exposure
Total Time: 31 min Total Time: <1 min

Fig. 3 . The set-up used to study
diamond inclusions at 13BM-D
allows swift on-line alternation

between the two techniques.
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At the 13BM-D beamline at GSECARS we combined microtomography (CMT)
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1. Scan diamonds with pink or monochromatic beam to produce a series of high . . - -

and SCXRD to approach this problem
contrast absorption images (Fig. 4.) Voids / cracks / Fluids Zoning Exsolution Polycrystalline

2. Filtered back-projection analysis produces their 3D reconstructed images (Fig. 5) 3D reconstructions can help reveal sample features such as density contrast, cracks, zoning, fluid

, , . , , , , rims etc. Such macroscopic characteristics are important in describing the history of the inclusion.
3. This allows the visualization, location and alignment of inclusions under the beam to

collect SCXRD patterns (Fig. 6)

4. SCXRD data analysis allows accurate phase identification and structure solution and OthCl‘chhniqucs P = : L
refinements . :

The 13BM-C beamline hosts a six- ' " | . N A ;‘ \ Diamond host
circle diffractometer and is ideal —-— A . | |
for SCXRD studies.
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A portable camera system allows | | ,
X-ray radiography experiments on e s T § teilisiont
diamond inclusions. 4 : | '

Inclusions

13 Set up forInclusuons

e

Although not of the same spatial resolution as CMT at 13BM-D, the user here can still
locate and align on strongly or semi-absorbing inclusions. There is the extra benefit of
the multiple rotation axes which allows improved data completeness.
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e . _ Fig. 6. SCXRD collected from a GeoSoilEnviroCARS is supported by the National Science Foundation — Earth Sciences via SEES: Synchrotron Earth and Environmental Science (EAR —
Fig. 4 . Absorption Images Fig. 5 . Reconstructed images along X-Y-Z multigrain/multiphase inclusion. 2223273). This resear.ch used resources of t.he Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for
the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
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