Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body

► Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body

Super eruptions violently transfer huge amounts (100 s–1000 s km3) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ~760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500–3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies.

Diffusional relaxation of Ti in quartz. CL image detailing core-rim zoning of a large quartz crystal; image of whole crystal shown in inset. White line corresponds to the location of CL traverse displayed in the bottom, with contacts between different zones indicated in black. Residence times in years and derived growth rates indicated by numbers on top of arrows. Notice that innermost contact has residence time close to 3,000 years. Calculated growth rates for two interior zones are close to 10−14 m/s, while growth rate for rim is ~10−13 m/s.

 G.A.R. Gualda, A.S. Pamukcu, M.S. Ghiorso, A.T. Anderson Jr, S.R. Sutton, M.L. Rivers, 2012, "Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body". PLoS ONE 7(5): e37492. doi:10.1371/journal.pone.0037492